UNDERGRADUATE COURSES

SIE 250 -- Introduction to Systems and Industrial Engineering (3 units)
Description: System modeling the elementary constructs and principles of system models including discrete-time, discrete-state system theory; finite state machines; modeling components, coupling, modes, and homomorphisms system design; requirements, life-cycle, performance measures and cost measures, tradeoffs, alternative design concepts, testing plan, and documentation. Applications and case studies from engineering. Prerequisite(s): ENGR 102, MATH 129. Credit for: 2 units engineering science, 1 unit engineering design. Usually offered: Fall.

SIE 265 -- Engineering Management I (3 units)

SIE 270 -- Mathematical Foundations of Systems and Industrial Engineering (3 units)
Description: Basics of data structures, transformations, computer methods, their implementation in MATLAB, and their applications in solving engineering problems. Prerequisite(s): ECE 175, MATH 129, PHYS 141. Credit for: 3 units engineering science. Usually offered: Spring.

SIE 277 -- Object-Oriented Modeling and Design (3 units)
Description: Modeling and design of complex systems using all views of the Unified Modeling Language (UML). Most effort will be in the problem domain (defining the problem). Some effort will be in the solution domain (producing hardware or software). Prerequisite(s): CS 127 A or ECE 175. Usually offered: Fall.

SIE 295S -- Systems and Industrial Engineering Sophomore Colloquium (1 unit)
Description: A colloquium designed to help students understand what SIE’s do. Students will interact with speakers and take tours to local companies. The course helps students select course options within the SIE programs and helps focus on possible SIE applications areas. Usually offered: Spring.

Note: Upper division courses, SIE 3xx and SIE 4xx, require Advanced Standing for registration. Students must contact the department to apply for advanced standing.

SIE 305 -- Introduction to Engineering Probability and Statistics (3 units)
Description: Axioms of probability, discrete and continuous distributions, sampling distributions, Engineering applications of statistical estimation, hypothesis testing, confidence intervals. Usually offered: Fall, Spring, Summer.

SIE 321 -- Probabilistic Models in Operations Research (3 units)
Description: Probability, Markov chains, Poisson processes, queuing models, reliability models. Prerequisite(s): SIE 305. Credit for: 3 units engineering science. Usually offered: Spring.

SIE 330R -- Engineering Experiment Design (3 units)
Description: Design and analysis of observational and factorial experiments employing numerical and graphical methods. Topics include control charts, probability plots, multiple regression analysis, confidence and prediction intervals and significance tests. Prerequisite(s): SIE 305; Credit for: 1.5 units engineering science, 1.5 units engineering design. Usually offered: Spring.

SIE 340 -- Deterministic Operations Research (3 units)
Description: Linear programming models, solution techniques, sensitivity analysis and duality. Prerequisite(s): SIE 265; SIE 270. Credit for: 3 units engineering science. Usually offered: Fall.

SIE 350 -- Deterministic Systems (3 units)
Description: Modeling and analysis and design of linear deterministic systems in both the time and frequency domains. Input/output differential equations, Laplace transforms and state space methods. Attention will be given to modeling physical and engineering systems and computer simulations. Prerequisite(s): ECE 207, MATH 254. Credit for: 3 units engineering science. Usually offered: Spring.

SIE 367 -- Engineering Management II (3 units)
Description: Strategic, tactical and operational planning; innovation and technological cycles; the elements of entrepreneurship, and human relations topics for technical managers. Prerequisite(s): SIE 265. Identical to: ENGR 367. Usually offered: Spring.

SIE 370 -- Embedded Computer Systems (4 units)
Description: Boolean algebra, combinational and sequential logic circuits, finite state machines, simple computer architecture, assembly language programming, and real-time computer control. The computer is used as an example of systems engineering design; it is analyzed as a system, not as a collection of components. Prerequisite(s): ENGR 102 and ENGR 211 M or ECE 207. Credit for: 1 unit engineering science, 2 units engineering design. Typical structure: 3 hours lecture, 3 hours laboratory. Usually offered: Fall, Spring.

SIE 377 -- Software for Engineers (3 units)
Description: Programming in C. Modular program design and verification, pointers and structures, data structures and algorithms including: lists, trees, graphs, searching and sorting. Prerequisite(s): ECE 175. Credit for: 1.5 units engineering science, 1.5 units engineering design. Usually offered: Fall.

SIE 383 -- Integrated Manufacturing Systems (3 units)
Description: Introduction to the integrated manufacturing enterprise and automation. Topics include computer-aided design, process planning, computer numerical control machining, machine vision, application of robots and automation. Prerequisite(s): ENGR 102, PHYS 141, ECE 175. Credit for: 2 units engineering science, 1 unit engineering design. Typical structure: 2 hours lecture, 2 hours laboratory. Usually offered: Spring.
SIE 406 -- Quality Engineering (3 units)
Description: Quality, improvement and control methods with applications in design, development, manufacturing, delivery and service. Topics include modern quality management philosophies, engineering/statistical methods (including process control, control charts, process capability studies, loss functions, experimentation for improvement) and TQM topics (customer driven quality, teaming, Malcolm Baldridge and ISO 9000). Prerequisite(s): SIE 305. May be conve ned with: SIE 506. Usually offered: Spring.

SIE 410A -- Human Factors and Ergonomics in Design (3 units)
Description: Consideration of human characteristics in the requirements for design of systems, organizations, facilities and products to enable human-centered design which considers human abilities, limitations and acceptance. Credit for: 2 units engineering science, 2 units engineering design. Usually offered: Fall.

SIE 415 -- Technical Sales and Marketing (3 units)
Description: Principles of the engineering sales process in technology-oriented enterprises; selling strategy, needs analysis, proposals, technical communications, electronic media, time management and ethics; practical application of concepts through study of real-world examples. Usually offered: Fall, Spring.

SIE 422 -- Engineering Decision Making Under Uncertainty (3 units)
Description: Application of principles of probability and statistics to the design and control of engineering systems in a random or uncertain environment. Emphasis is placed on Bayesian decision analysis. Prerequisite(s): SIE 330R, SIE 305. Credit for: 1 unit engineering science, 2 units engineering design. May be conve ned with: SIE 522. Usually offered: Fall.

SIE 430 -- Engineering Statistics (3 units)
Description: Statistical methodology of estimation, testing hypotheses, goodness-of-fit, nonparametric methods and decision theory as it relates to engineering practice. Significant emphasis on the underlying statistical modeling and assumptions. Prerequisite(s): SIE 330R, SIE 305. May be conve ned with: SIE 530. Usually offered: Fall.

SIE 431 -- Simulation Modeling and Analysis (3 units)
Description: Discrete event simulation, model development, statistical design and analysis of simulation experiments, variance reduction, random variate generation, Monte Carlo simulation. Prerequisite(s): SIE 305. Credit for: 1.5 units engineering science, 1.5 units engineering design. May be conve ned with: SIE 531. Usually offered: Fall, Spring.

SIE 440 -- Survey of Optimization Methods (3 units)
Description: Survey of methods including network flows, integer programming, nonlinear programming, and dynamic programming. Model development and solution algorithms are covered. Prerequisite(s): SIE 340. Credit for: 3 units engineering science. May be conve ned with: SIE 540. Usually offered: Spring.

SIE 453 -- Deterministic Control Systems (3 units)
Description: The analysis and synthesis of deterministic linear control systems, with emphasis on design using both frequency-domain and state-variable approaches. Prerequisite(s): SIE 350. Credit for: 1.5 units engineering science, 1.5 units engineering design. Usually offered: Fall.

SIE 454A -- The Systems Engineering Process (3 units)
Description: Process and tools for systems engineering of large-scale, complex systems: requirements, performance measures, concept exploration, multi-criteria tradeoff studies, life cycle models, system modeling, etc. May be conve ned with: SIE 554A. Usually offered: Fall.

SIE 457 -- Project Management (3 units)
Description: Foundations, principles, methods and tools for effective design and management of projects in technology-based organizations. This course focuses on the scope, time, cost, performance and quality concerns of engineering projects characterized by risk and uncertainty. Initiating, planning, executing, monitoring, controlling and closing process are addressed. Students design and complete a project from concept through completion. Project Management software is utilized. Credit for: 3 units engineering science. Usually offered: Spring.

SIE 462 -- Production Systems Analysis (3 units)
Description: Production systems, quantitative methods for forecasting, aggregate planning, inventory control, materials requirement planning, production scheduling, manpower planning and facility design. Prerequisite(s): SIE 305. SIE 340 or consent of advisor. Credit for: 3 units engineering science. Usually offered: Fall.

SIE 464 -- Cost Estimation (3 units)
Description: Focuses on principles of cost estimation and measurement systems with specific emphasis on parametric models. Approaches from the fields of hardware, software and systems engineering are applied to a variety of contexts (risk assessment, judgment & decision making, performance measurement, process improvement, adoption of new tools in organizations, etc.). Material is divided into five major sections: cost estimation fundamentals, parametric model development and calibration, advanced engineering economic principles, measurement systems, and policy issues. Usually offered: Spring.

SIE 482 -- Lean Engineering (3 units)
Description: Survey of lean and variability reduction principles as applied to manufacturing and non-manufacturing environments. Prerequisite(s): SIE 305. Usually offered: Spring.

SIE 483 -- Computer-Integrated Manufacturing (CIM) Systems (3 units)
Description: Modern manufacturing systems with emphasis on information requirements and data management. Includes CAD, CAM, CAPP, real-time scheduling, networking, and system justification. Prerequisite(s): SIE 383. May be conve ned with: SIE 583. Usually offered: Fall.

SIE 498 -- Senior Capstone (1-3 units)
Description: A culminating experience for majors involving a substantive project that demonstrates a synthesis of learning accumulated in the major, including broadly comprehensive knowledge of the discipline and its methodologies. Senior standing required. May be repeated: for a total of 6 units of credit. Usually offered: Fall, Spring, Summer.

SIE 498H -- Honors Thesis (3 units)
Description: An honors thesis is required of all the students graduating with honors. Students ordinarily sign up for this course as a two-semester sequence. The first semester the student performs research under the supervision of a faculty member; the second semester the student writes an honors thesis. May be repeated: for credit 2 times (maximum 3 enrollments). Usually offered: Fall, Spring.

2.23.12